3.821 \(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))} \, dx\)

Optimal. Leaf size=29 \[ \frac {2 \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{d (a+b)} \]

[Out]

2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+b),2^(1/2))/(a+b)/d

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 29, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {4264, 3849, 2805} \[ \frac {2 \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{d (a+b)} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])),x]

[Out]

(2*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/((a + b)*d)

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx\\ &=\int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx\\ &=\frac {2 \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{(a+b) d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 29, normalized size = 1.00 \[ \frac {2 \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{d (a+b)} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])),x]

[Out]

(2*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/((a + b)*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 3.07, size = 150, normalized size = 5.17 \[ \frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )}{\left (a -b \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c)),x)

[Out]

2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^
2+1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^
2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)^(3/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)*cos(d*x + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ \int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))),x)

[Out]

int(1/(cos(c + d*x)^(3/2)*(a + b/cos(c + d*x))), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \sec {\left (c + d x \right )}\right ) \cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cos(d*x+c)**(3/2)/(a+b*sec(d*x+c)),x)

[Out]

Integral(1/((a + b*sec(c + d*x))*cos(c + d*x)**(3/2)), x)

________________________________________________________________________________________